Skip to contents

This function transformed the numerical data into the categorized format by grouping data and scaling values.

Usage

anim_prep(
  data,
  id = NULL,
  values = NULL,
  time = NULL,
  group = NULL,
  ncat = 5L,
  breaks = NULL,
  label = NULL,
  group_scaling = NULL,
  scaling = "rank"
)

Arguments

data

A data frame contained the numerical values.

id

The column name that represents the identifiers variable.

values

The column name contains the numeric values.

time

The column name that represents the time variable.

group

The column name that represents the distinguished group between the values.

ncat

The number of categories to be created for scaling values.

breaks

A vector of breaks for creating bins.

label

A vector of labels to represent the qtile.

group_scaling

The column name that will be used for grouping the variable before scaling.

scaling

The scaling method to be used; "rank" or "absolute".

Value

A categorized data.

Details

The function takes the input data and performs several operations to transformed it into categorized format. It is done by grouping data, scales values, and assigned the qtile.

Examples

# rank scaling
anim_prep(data = osiris, id = ID, values = sales, time = year)
#> # A tibble: 10,270 × 4
#>    id            time qtile label
#>    <fct>        <int> <dbl> <chr>
#>  1 AE30008GU     2006     1 1    
#>  2 AT9110050653  2006     3 3    
#>  3 AU001150849   2006     5 5    
#>  4 AU004085330   2006     1 1    
#>  5 AU006624228   2006     2 2    
#>  6 AU008720223   2006     5 5    
#>  7 AU009066648   2006     5 5    
#>  8 AU009134114   2006     3 3    
#>  9 AU009213754   2006     4 4    
#> 10 AU009219809   2006     2 2    
#> # ℹ 10,260 more rows

# group_rank scaling
anim_prep(data = osiris, id = ID, values = sales, time = year,
group_scaling = country)
#> # A tibble: 10,270 × 5
#>    id            time qtile label group_scaling
#>    <fct>        <int> <dbl> <chr> <fct>        
#>  1 AE30008GU     2006     0 0     AE           
#>  2 AT9110050653  2006     0 0     AT           
#>  3 AU001150849   2006     4 4     AU           
#>  4 AU004085330   2006     1 1     AU           
#>  5 AU006624228   2006     1 1     AU           
#>  6 AU008720223   2006     4 4     AU           
#>  7 AU009066648   2006     5 5     AU           
#>  8 AU009134114   2006     2 2     AU           
#>  9 AU009213754   2006     3 3     AU           
#> 10 AU009219809   2006     2 2     AU           
#> # ℹ 10,260 more rows

# absolute scaling
anim_prep(data = osiris, id = ID, values = sales, time = year,
scaling = "absolute")
#> # A tibble: 10,270 × 4
#>    id            time qtile label
#>    <fct>        <int> <dbl> <chr>
#>  1 AE30008GU     2006     5 5    
#>  2 AT9110050653  2006     5 5    
#>  3 AU001150849   2006     5 5    
#>  4 AU004085330   2006     5 5    
#>  5 AU006624228   2006     5 5    
#>  6 AU008720223   2006     5 5    
#>  7 AU009066648   2006     5 5    
#>  8 AU009134114   2006     5 5    
#>  9 AU009213754   2006     5 5    
#> 10 AU009219809   2006     5 5    
#> # ℹ 10,260 more rows

# group_absolute scaling
anim_prep(data = osiris, id = ID, values = sales, time = year,
group_scaling = country, scaling = "absolute")
#> # A tibble: 10,270 × 5
#>    id            time qtile label group_scaling
#>    <fct>        <int> <dbl> <chr> <fct>        
#>  1 AE30008GU     2006     4 4     AE           
#>  2 AT9110050653  2006     5 5     AT           
#>  3 AU001150849   2006     5 5     AU           
#>  4 AU004085330   2006     5 5     AU           
#>  5 AU006624228   2006     5 5     AU           
#>  6 AU008720223   2006     5 5     AU           
#>  7 AU009066648   2006     5 5     AU           
#>  8 AU009134114   2006     5 5     AU           
#>  9 AU009213754   2006     5 5     AU           
#> 10 AU009219809   2006     5 5     AU           
#> # ℹ 10,260 more rows